

E.T.		
EDIÇÃO: 1	2008-11-26	
REVISÃO: 2 2016-02-24		
PÁGINA: 1 de 30		

ESPECIFICACÕES TÉCNICAS PARA ELABORAÇÃO DE TELAS FINAIS DAS REDES DE ABASTECIMENTO DE ÁGUA E ÁGUAS RESIDUAIS

DIREÇÃO TÉCNICA E EXPLORAÇÃO

TELAS FINAIS

EDIÇÃO: 1 2008-11-26

REVISÃO: 2 2016-02-24

PÁGINA: **2 de 30**

Índice Remissivo

1.	INTRODUÇÃO	3
2.	OBJETIVO	3
3.	ESPECIFICAÇÕES GERAIS	3
3.1.	SISTEMA DE REFERÊNCIA	3
3.2.	FICHEIROS	4
3.3.	Cartografia	4
4.	ABASTECIMENTO DE ÁGUA	5
4.1.	Traçado em planta	5
4.2.	TRAVESSIA DE OUTRAS REDES DE SERVIÇOS	9
4.3.	Símbolos, Layers, Traços	10
4.4.	Códigos	13
4.5.	DESENHO EM CAD	17
4.6.	Base de Dados das Infraestruturas	18
5.	ÁGUAS RESIDUAIS	19
5.1.	Traçado em Planta	19
5.2 .	TRAVESSIA DE OUTRAS REDES DE SERVIÇOS	22
5.3.	Símbolos, Layers, Traços	23
5.4.	Códigos	25
5.5.	DESENHO EM CAD	28
5.6.	Base de Dados das Infraestruturas	29

DIREÇÃO TÉCNICA E EXPLORAÇÃO

TELAS FINAIS

EDIÇÃO: 1	2008-11-26	
REVISÃO: 2	2016-02-24	
PÁGINA: 3 do 30		

PAGINA: 3 de 30

1. INTRODUÇÃO

A Indaqua – Indústria e Gestão de Águas S.A, entidade gestora de redes, considera vital e de importância estratégica, possuir uma informação cadastral válida e precisa das suas redes de abastecimento de água e de águas residuais. O desconhecimento desta informação condiciona, quer a sua exploração, em termos de eficácia das intervenções, quer o rigor das informações prestadas a terceiros, nomeadamente, projetistas e empreiteiros. O cadastro assume assim, um papel primordial num contexto de sustentabilidade, rentabilidade e qualidade que se pretende cada vez mais assegurar.

2. OBJETIVO

Pretende-se com o presente manual definir especificações técnicas a adotar pelas entidades externas, designadamente, donos de obra e empreiteiros, que intervêm diretamente no processo construtivo das redes de abastecimento de água e águas residuais, alterando-as e atualizando-as. Todos os procedimentos apresentados de seguida visam uniformizar a informação cadastral produzida - telas finais - tendo em vista a sua integração e desenvolvimento no Sistema de Informação Geográfica (SIG) da Indaqua.

3. ESPECIFICAÇÕES GERAIS

3.1. Sistema de Referência

As telas finais terão obrigatoriamente de ser produzidas com informação georreferenciada, exclusivamente no sistema de referência **ETRS89/PT-TM06**.

Altimetricamente deve ser utilizado o Datum Altimétrico Nacional, correspondente ao nível médio das águas do mar, registado pelo marégrafo de Cascais.

Todos os levantamentos devem ser realizados de tal forma que seja conseguida a precisão centimétrica, sendo o erro máximo da ordem dos 20 centímetros. A escala adotada para a execução das telas finais é a escala 1:1000.

DIREÇÃO TÉCNICA E EXPLORAÇÃO

TELAS FINAIS

PÁGINA: 4 de 30		
REVISÃO: 2	2016-02-24	
EDIÇÃO: 1	2008-11-26	

3.2. Ficheiros

Os ficheiros a fornecer deverão estar organizados numa estrutura de layers e diretorias bem definida, onde constem os ficheiros com elementos gráficos e alfanuméricos:

- Os ficheiros com elementos gráficos deverão ser apresentados em AutoCAD 2000 ou versão superior;
- Os ficheiros com dados alfanuméricos deverão ser apresentados em Microsoft Excel 2003 ou versão superior.

Os layers a utilizar e respectiva formatação (nome, cor, tipo de linha, espessura) serão discriminados no ponto 4.3 e 5.3.

3.3. Cartografia

As alterações efetuadas à cartografia na zona de implantação das condutas/coletores e áreas envolventes afetas à obra têm de ficar registadas nas telas finais, tendo em vista a constante atualização e integração desta informação no Sistema de Informação Geográfica.

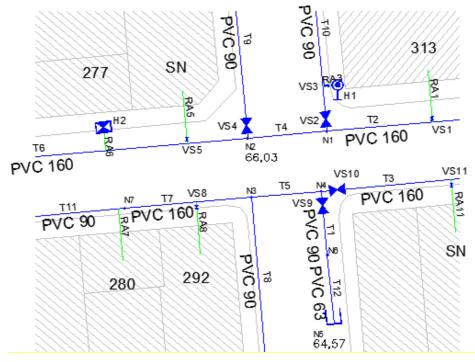
O dono de obra/empreiteiro deverá assim, concluída a obra, promover um levantamento topográfico georreferenciado das referências em falta, de modo a evitar uma constante desatualização da informação geográfica nas zonas referidas anteriormente, induzindo em erro quem consulta a tela final.

Nas zonas limite, o levantamento topográfico deverá garantir o ajuste, sem descontinuidades, da informação nova com a existente na cartografia base.

A cartografia produzida deverá manter na forma e conteúdo, uma estrutura (layer, cor, tipo de linha, espessura, simbologia, estilo de letra) em tudo idêntica à adotada na cartografia base fornecida.

A escala adotada para a execução da cartografia é a escala 1:1000 - equidistância das curvas de nível: 1m.

INDAQUA	ESPECIFICAÇÕES TÉCNICAS		
		EDIÇÃO: 1	2008-11-26
DIREÇÃO TÉCNICA E EXPLORAÇÃO	TELAS FINAIS	REVISÃO: 2	2016-02-24
EXPLORAÇÃO		PÁGINA: 5 (de 30


4. ABASTECIMENTO DE ÁGUA

As telas finais referentes a redes de abastecimento de água deverão conter, no mínimo, o registo de informação relativa aos seguintes temas:

- Cartografia atualizada;
- · Traçado em planta da conduta, nós e ramais de ligação;
- · Localização e identificação dos nós;
- Localização e identificação dos ramais de ligação;
- Localização e identificação de todos os órgãos constituintes;
- · Travessias de outras redes de serviços.

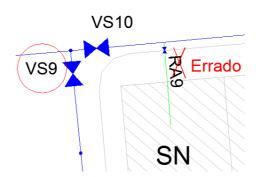
4.1. Traçado em planta

O traçado das condutas, dos ramais de ligação e de outras redes de serviços devem ser definidos pelo respectivo eixo, devidamente georreferenciados e representados sempre da mesma forma em termos de desenho (layer, cor, tipo de linha, espessura, texto associado, código).

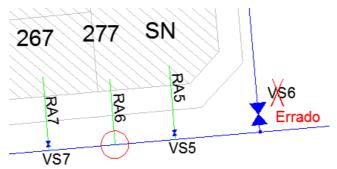
Figura 1 – Representação esquemática da rede – troços de conduta, nós e órgãos constituintes devidamente georreferenciados e codificados

DIREÇÃO TÉCNICA E EXPLORAÇÃO

TELAS FINAIS

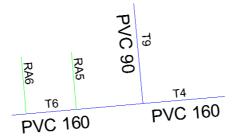

EDIÇÃO: 1	2008-11-26	
REVISÃO: 2	2016-02-24	
PÁGINA: 6 de 30		

As telas finais de infraestruturas de águas e saneamento, produzidas em CAD, não são frequentemente concebidas com a preocupação futura de utilização num Sistema de Informação Geográfica. Quando se considera esta opção, devem ser tidos em conta vários aspectos com o intuito de otimizar a integração CAD – SIG, nomeadamente:


- · Todos os elementos da rede devem ser codificados, conforme Fig.1;
- O campo numérico do código do ramal de ligação e do código da respetiva válvula de seccionamento devem ser iguais;

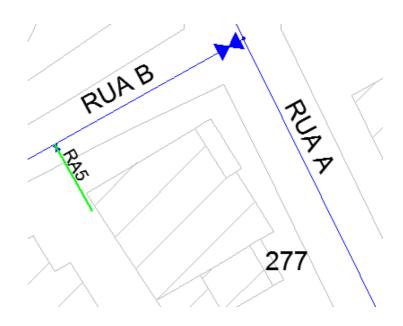
 Não podem existir códigos de ramal de ligação, cujo campo numérico seja igual ao campo numérico do código de válvulas de seccionamento de rede;

· Certos ramais de ligação não têm a respetiva válvula de corte, visível; sendo assim, o campo numérico do código do ramal não pode ser aplicado noutra válvula, qualquer que seja;



DIREÇÃO TÉCNICA E EXPLORAÇÃO

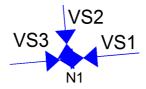
TELAS FINAIS


PÁGINA: 7 de 30		
REVISÃO: 2	2016-02-24	
EDIÇÃO: 1	2008-11-26	

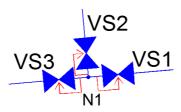
 O código do ramal de ligação e o código, material e diâmetro da conduta devem estar alinhados (paralelos) aos respetivos traçados;

• A figura seguinte define um ramal fisicamente na Rua B a abastecer um prédio com o número de polícia na Rua A; nestas situações, em termos de base de dados, o arruamento a considerar para o endereçamento do ramal será o B; quanto ao número de polícia (Rua A) será sempre precedido de cardinal (#); este símbolo dará indicação que o ramal de ligação e o número de polícia estão em arruamentos distintos;

Código	Arruamento	Nº. Polícia	
RA5	RUA B	#277	



DIREÇÃO TÉCNICA E EXPLORAÇÃO


TELAS FINAIS

REVISÃO: 2 PÁGINA: 8 c	2016-02-24
DEL 410 Ã 0 0	004/0004
EDIÇÃO: 1	2008-11-26

 Na maioria dos casos, as válvulas de seccionamento de rede existentes num nó distam poucos centímetros entre si; ao colocar no desenho o bloco da válvula de rede definido neste manual (2,00x1,50m), no ponto georreferenciado, resultará uma sobreposição de blocos com consequente falta de perceção do nó;

A solução passa por mover as válvulas ao longo das respetivas condutas até deixar de haver sobreposição;

Nesta operação terá de ficar garantido que as condutas passarão, sempre, pelo snap point georreferenciado da válvula, obtido pelo GPS no terreno; as coordenadas a introduzir na base de dados serão, sempre, as obtidas pelo GPS no terreno (coordenadas georreferenciadas) e nunca as que resultam após deslocamento das válvulas;

- · Os troços de conduta deverão ter, na representação em CAD, características homogéneas (diâmetro e material) ao longo do seu comprimento, devendo estar assinaladas regularmente;
- Deverão ser introduzidos nós de delimitação devidamente codificados em todos os pontos que impliquem descontinuidades nas características físicas da tubagem, designadamente:
 - Ø interseções, cruzamentos, reduções;
 - Ø pontos onde se constate a mudança de diâmetro, material, idade, classe de pressão ou outra característica da tubagem;
 - Ø mudanças de arruamento;
 - Ø pontos altos e pontos baixos de determinada conduta.

DIREÇÃO TÉCNICA E EXPLORAÇÃO

TELAS FINAIS

REVISÃO: 2	2016-02-24
REVISÃO: 2	2016-02-24
EDIÇÃO: 1	2008-11-26

- No desenho, o nó deve fazer referência à cota do terreno, arredondada ao centímetro;
- Quando forem construídas câmaras de manobras, deverão ser representados os seus limites e a tampa;
- Sempre que existir, mencionar o número do polícia, que identifica a porta principal de uma casa, de um edifício, de um bloco de apartamentos ou de um terreno e tem uma correspondência física com o ramal domiciliário;
- Os números de polícia, no desenho, devem ser escritos individualmente (não colocar vários NP na mesma caixa de texto);
- Prédios que não tenham número de polícia, inserir SN;
- A definição dos layers, a simbologia e código dos órgãos constituintes e a definição dos materiais a utilizar nas telas finas deverão ser escrupulosamente as referidas neste manual.

4.2. Travessia de outras redes de serviços

As infra-estruturas de outras entidades (EDP, Gás, Telefones, Águas Pluviais, etc.) e de Águas Residuais, detetadas no subsolo aquando da abertura da vala para assentamento da conduta deverão ser cadastradas.

Na travessia de outras redes de serviços deverá proceder-se à marcação, sobre o traçado em planta, das secções onde se constatam travessias de condutas, coletores, cabos, etc., se possível identificando a rede a que pertencem e indicando a profundidade a que ocorrem.

No caso das condutas e coletores, considera-se útil o registo do diâmetro e material; no caso dos cabos, o registo do número e tipo.

O layer de cada rede de serviço terá o nome da respetiva entidade (ex: AA_EDP; AA_GAS).

Atendendo que SIG é uma ferramenta de trabalho com grande capacidade de armazenamento de informação, inclusive de imagem, vê-se com interesse a recolha de fotografias no decurso das empreitadas, efetuadas essencialmente a infra-estruturas enterradas, localizadas em pontos

NDAQUA	ESPECIFICAÇ	ÇÕES TÉCNICA	1 S
		EDIÇÃO: 1	20
DIREÇÃO TÉCNICA E	TELAS FINAIS	REVISÃO: 2	20

EDIÇÃO: 1	2008-11-26
REVISÃO: 2	2016-02-24
Ρά <u></u> GINΔ· 10	do 30

particulares das redes de água e saneamento, tais como, locais de interceção com outras redes de serviços, nós de derivação, entre outros.

4.3. Símbolos, Layers, Traços

EXPLORAÇÃO

Neste ponto define-se a simbologia específica dos órgãos constituintes da rede, os layers, o tipo e cor do traço das condutas, fundamentais na elaboração das telas finais, evitando a posterior intervenção dos técnicos da Indaqua, numa clara perda de tempo e produtividade.

SIMBOLO	LAYER	COR	LINETYPE	LINEWEIGHT
	AA_CONDUTA	5	Continuous	Default Global Width= 0.00
	AA_RAMAL_LIGACAO	3	Continuous	Default Global Width= 0.00
	AA_VALV_SECCIONAMENTO_REDE	5	Block Nome = AA_VALV_SECCIONA	MENTO_REDE
	AA_VALV_SECCIONAMENTO_RAMAL	5	Block Nome = AA_VALV_SECCIONA	MENTO_RAMAL
	AA_VALV_REDUTORA_PRESSAO	5	Block Nome = AA_VALV_REDUTOR	A_PRESSAO
7	AA_VALV_RETENCAO	5	Block Nome = AA_VAI	LV_RETENCAO
	AA_CAMARA_PERDA_CARGA	5	Block Nome = AA_CAMARA_PERDA	_CARGA
1	AA_VENTOSA	5	Block Nome = AA_VEN	ITOSA
*	AA_DESCARGA_REDE	5	Block Nome = AA_DES	SCARGA_REDE
	AA_MEDIDOR_CAUDAL	5	Block Nome = AA_MED	DIDOR_CAUDAL
	AA_BOCA_REGA	5	Block Nome = AA_BOO	CA_REGA

DIREÇÃO TÉCNICA E EXPLORAÇÃO

TELAS FINAIS

EDIÇÃO: 1 2008-11-26

REVISÃO: 2 2016-02-24

PÁGINA: 11 de 30

	AA_BOCA_INCENDIO	5	Block Nome = AA_BOCA_INCENDIO
	AA_MARCO_INCENDIO	5	Block Nome = AA_MARCO_INCENDIO
	AA_CAMARA_MANOBRAS	5	Block Nome = AA_CAMARA_MANOBRAS
	AA_RESERVATORIO	5	Block Nome = AA_RESERVATORIO
C	AA_CELULA	5	Block Nome = AA_CELULA
F	AA_FURO	5	Block Nome = AA_FURO
	AA_FILTRO	5	Block Nome = AA_FILTRO
	AA_NO_SEM_DERIVACAO	5	Block Nome = AA_JUNTA_CEGA
•		5	Block Nome = AA_NO
•	AA_NO_COM_DERIVACAO	5	Block Nome = AA_NO
	AA_BEBEDOURO_CHAFARIZ	5	Block Nome = AA_BEBEDOURO_CHAFARIZ
	AA_ELETROBOMBA	5	Block Nome = AA_ELETROBOMBA

DIREÇÃO TÉCNICA E EXPLORAÇÃO

TELAS FINAIS

EDIÇÃO: 1 2008-11-26

REVISÃO: 2 2016-02-24

PÁGINA: **12 de 30**

\bigcirc	AA_PONTO_AMOSTRAGEM	5	Block Nome = AA_PONTO_AMOSTRAGEM
	AA_MEDIDOR_NIVEL	5	Block Nome = AA_MEDIDOR_NIVEL
<u>P</u> —	AA_MEDIDOR_PRESSAO	5	Block Nome = AA_MEDIDOR_PRESSAO
E	AA_PONTO_ENTREGA	5	Block Nome = AA_PONTO_ENTREGA
CL	AA_PONTO_CLORAGEM	5	Block Nome = AA_PONTO_CLORAGEM
★	AA_VALV_ALIVIO	5	Block Nome = AA_VALV_ALIVIO
AT	AA_VALV_ALTIMETRICA	5	Block Nome = AA_VALV_ALTIMETRICA
(3)	AA_VALV_REGULADORA_CAUDAL	5	Block Nome = AA_VALV_REGULADORA_CAUDAL
EEAA	AA_ESTACAO_ELEVATORIA	5	Block Nome = AA_ESTACAO_ELEVATORIA
ETA	AA_ESTACAO_TRATAMENTO_AGUAS	5	Block Nome = AA_ESTACAO_TRATAMENTO_AGUAS
243,57	AA_NO_COTA	7	Fonte = Text Style = Standard Font Name = txt.shx Height = 1.00 Width factor = 1.00

DIREÇÃO TÉCNICA E EXPLORAÇÃO

TELAS FINAIS

REVISÃO: 2 2016-02-	24
EDIÇÃO: 1 2008-11-	26

			Fonte = Text
			Style = Arial
1147	AA_NUMERO_POLICIA	7	Font Name = Arial
			Height = 1.50
			Width factor = 1.00

Tabela 1 – Simbologia e Layers

Os nomes dos layers deverão ser rigorosamente os indicados na tabela anterior – palavras com letra maiúscula, sem acentuação e sem espaços (utilizar o caracter underscore).

4.4. Códigos

Cada órgão constituinte da rede (conduta, válvula, medidor...) deve ser codificado mediante um código alfanumérico, que é composto por um campo alfabético, identificativo do elemento e por outro campo numérico sequencial, com início no número 1.

O campo alfabético, correspondente ao código de cada elemento, deverá estar de acordo com a seguinte tabela:

ELEMENTO	CAMPO ALFABÉTICO
Conduta	Т
Ramal de Ligação	RA
Válvula de Seccionamento	vs
Descarga de Rede	DR
Válvula Redutora de Pressão	VRP
Válvula de Retenção	VR
Câmara de Perda de Carga	СРС
Ventosa	V
Medidor de Caudal	МС
- Boca de Rega	
- Boca de Incêndio	H (hidrante)
- Marco de Incêndio	

DIREÇÃO TÉCNICA E EXPLORAÇÃO

TELAS FINAIS

EDIÇÃO: 1	2008-11-26	
REVISÃO: 2	2016-02-24	
PÁGINA: 14 de 30		

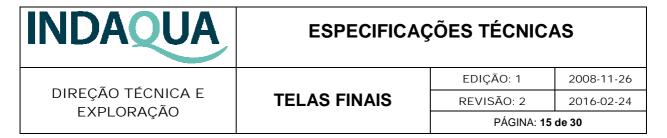

Câmara de Manobras	СМ
Reservatório	R
Célula	CEL
Furo	FU
Filtro	F
Bebedouro e Chafariz	ВС
Eletrobomba	Е
Ponto de Amostragem	PA
Medidor de Nível	MN
Medidor de Pressão	MP
Ponto de Entrega	PE
Ponto de Cloragem	PC
Válvula de Alívio	VA
Válvula Altimétrica	VAT
Válvula Reguladora de Caudal	VRC
Estação Elevatória	EEAA
Estação de Tratamento de	
Águas	ETA
Nó com Derivação	
Nó sem Derivação	N

Tabela 2 – Campo alfabético do código do elemento (letra maiúscula)

Assim, um elemento tipo válvula de seccionamento terá o código - **VS10**, em que VS é identificativo da válvula de seccionamento e 10 é o número sequencial.

Estes códigos terão de ficar necessariamente em layers diferentes do tipo AA_VALV_SECCIONAMENTO_CODIGO.

No caso de todo o tipo de condutas o código a utilizar será o T de troço – T210.

O layer a utilizar para o código das condutas será AA_CONDUTA_CODIGO.

Código do Elemento (ex.)	Layer do Código	Tipo, Cor e Tamanho de Letra do Código
T10	AA_CONDUTA_CODIGO	
RA37	AA_RAMAL_LIGACAO_CODIGO	
H30	AA_HIDRANTE_CODIGO	Tipo Arial, Cor White(7) e Tamanho 1,00
N47	AA_NO_CODIGO	
VS51	AA_VALV_SECCIONAMENTO_CODIGO	
DR13	AA_DESCARGA_REDE_CODIGO	

Tabela 3 – Layers de códigos dos órgãos mais frequentes (letra maiúscula)

Na tabela anterior estão mencionados os elementos da rede mais frequentes. Todos os outros seguirão o mesmo critério.

Quando se justifique e para melhor compreensão do desenho, pode-se alterar o tamanho da letra para valores inferiores a 1,00, de forma coerente.

Os códigos dos elementos deverão ser escritos em letra maiúscula.

Ao longo do traçado das condutas e somente das condutas se assinalará o material e diâmetro das mesmas – PVC 200. O layer para a etiquetagem do material e diâmetro será AA_CONDUTA_MATERIAL_DIAMETRO.

Material e Diâmetro da Conduta	Layer do Material e Diâmetro da Conduta	Tipo, Cor e Tamanho de Letra do Material e Diâmetro
PVC 315		
FFD 300	AA_CONDUTA_MATERIAL_DIAMETRO	Tipo Arial, Cor White(7) e Tamanho 1,50
A 500		inporting, our writte(), o raintainte 1,00
FC 100		

Tabela 4 – Layer do material e diâmetro do troço de conduta (letra maiúscula)

Nos troços pequenos, para não prejudicar a perceção do desenho, pode-se alterar o tamanho da etiquetagem para valores inferiores a 1,50, ou mesmo suprimi-la. Esta informação constará na base de dados. O material e diâmetro deverão ser escritos em letra maiúscula.

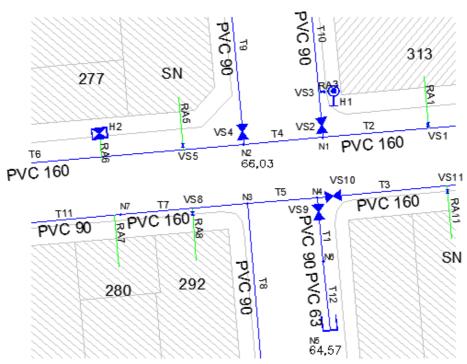


Figura 2 – Símbolos, códigos e cores.

DIREÇÃO TÉCNICA E EXPLORAÇÃO

TELAS FINAIS

EDIÇÃO: 1	2008-11-26	
REVISÃO: 2	2016-02-24	
PÁGINA: 17 de 30		

4.5. Desenho em CAD

Este ponto revela-se de extrema importância. Se a informação for devidamente desenhada e estruturada, o tempo necessário para fazer a integração desta informação em SIG vai ser menor, otimizando-se assim o tempo de atualização de dados e os recursos humanos.

Os blocos mencionados na Tabela 1 e o exemplo tipo da Figura 2 estão devidamente definidos pela Indaqua, para a escala 1:1000, e estão disponíveis na página WEB da Indaqua – www.indaqua.pt – Atendimento Técnico – Elaboração de Telas Finais. Devem ser rigorosamente respeitados.

A unidade de inserção dos blocos é o metro, o scaleX, scaleY e scaleZ são iguais a 1 e no ambiente "Block Editor" as entidades que formam os blocos estão no layer ZERO.

O ponto notável do bloco (snap point) está devidamente definido, geralmente no "centróide" do bloco.

O ponto de inserção do bloco do respetivo elemento (Ex: **válvula**) deve coincidir com a coordenada X,Y,Z, georreferenciada, obtida no terreno.

Devem ser respeitados os pontos de inserção dos blocos dos elementos e estes devem estar sob um " snap point " ou no final das entidades que representam as condutas e ramais de ligação.

Todas as condutas e ramais de ligação devem ser desenhados como polylines, à cota ZERO. As condutas apenas devem estar quebradas nos nós e sempre que se saiba o sentido de escoamento da água, devem ser digitalizadas do Nó a montante para o Nó a jusante.

A conduta passará sempre pelo snap point da válvula de rede.

Os ramais de ligação devem ser desenhados, sempre, no sentido do escoamento (conduta-ponto de abastecimento).

DIREÇÃO TÉCNICA E EXPLORAÇÃO

TELAS FINAIS

EDIÇÃO: 1 2008-11-26

REVISÃO: 2 2016-02-24

PÁGINA: 18 de 30

O ramal de ligação passará sempre pelo snap point da válvula de ramal.

Deve ser garantida a perfeita conetividade entre elementos:

- Conduta Nó Conduta;
- Conduta Ramal de ligação.

4.6. Base de Dados das Infraestruturas

Cada tipo de infraestrutura deve ter associado uma base de dados (folha de Excel), contendo os respetivos atributos.

A base de dados está devidamente definida pela Indaqua e está disponível na página WEB da Indaqua – www.indaqua.pt – Atendimento Técnico – Elaboração de Telas Finais. Deve ser rigorosamente respeitada.

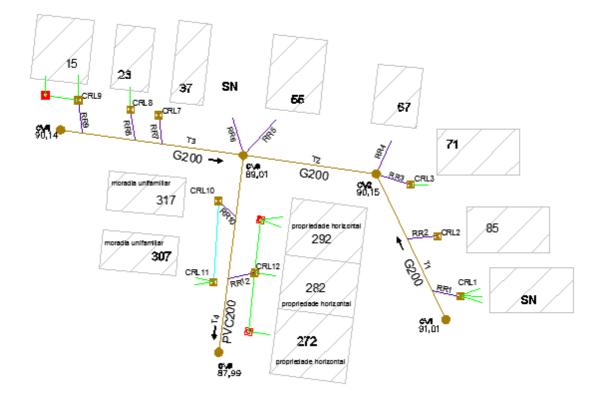
Para cada elemento (Ex:VS73), o código existente no desenho (AutoCAD) deve ser exatamente igual ao código da base de dados (Excel).

Se um ramal de ligação tiver associado vários números de polícia, na base de dados devem ser separados por hífen (-). Prédios que não tenham n.º de polícia, inserir SN.

O atributo ARRUAMENTO deverá ser preenchido de acordo com a toponímia local. Arruamentos sem toponímia deverão ser designados por "Sem Denominação".

Células referentes a Coordenadas M e P, Cotas e Profundidades devem ser do tipo Número, com 2 casas decimais (arredondado ao cm).

Devem-se preencher todos os campos passíveis de serem preenchidos.


5. ÁGUAS RESIDUAIS

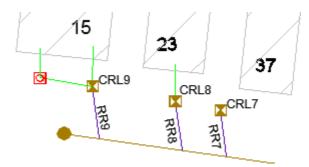
As telas finais referentes a redes de águas residuais deverão conter, no mínimo, o registo de informação relativa aos seguintes temas:

- · Cartografia atualizada;
- · Traçado em planta dos coletores, caixas ramal de ligação e respetivas ligações;
- · Localização e identificação de todos os órgãos constituintes;
- · Travessias de outras redes de serviços.

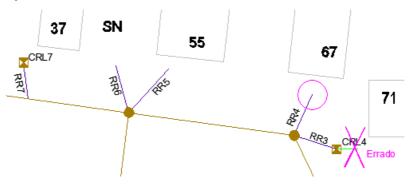
5.1. Traçado em Planta

O traçado dos coletores, das caixas ramal de ligação, e de outras redes de serviços devem ser definidos pelo respetivo eixo, devidamente georreferenciados e representados sempre da mesma forma em termos de desenho (layer, cor, tipo de linha, espessura, texto associado, código).

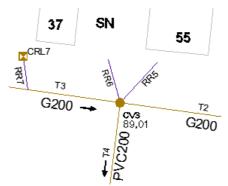
Figura 3 – Representação esquemática da rede – troços de coletores e caixas ramal de ligação devidamente georreferenciados e codificados


DIREÇÃO TÉCNICA E EXPLORAÇÃO

TELAS FINAIS

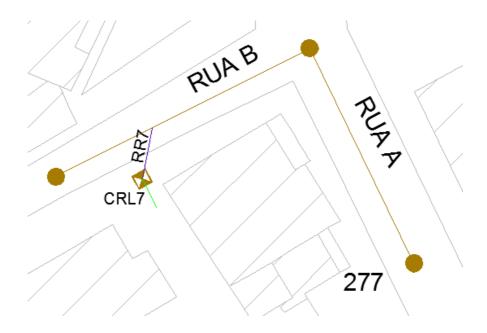

EDIÇÃO: 1	2008-11-26	
REVISÃO: 2	2016-02-24	
PÁGINA: 20 de 30		

As telas finais de águas residuais devem ter em conta o seguinte:


- · Todos os elementos da rede devem ser codificados, conforme Fig.3;
- O campo numérico do código do ramal de ligação e do código da respetiva caixa ramal de ligação devem, sempre, ser iguais:

 Certos ramais de ligação não têm caixa ramal de ligação, visível ou existente. Sendo assim, o campo numérico do código do ramal não pode ser aplicado noutra caixa ramal de ligação, qualquer que seja:

O código do ramal de ligação e o código, material e diâmetro do coletor devem estar alinhados (paralelos) aos respetivos traçados:


DIREÇÃO TÉCNICA E EXPLORAÇÃO

TELAS FINAIS

EDIÇÃO: 1 REVISÃO: 2	2016-02-24
REVISAU: 2	2016-02-24

A figura seguinte define um ramal e uma CRL fisicamente na Rua B a servir um prédio com o número de polícia na Rua A. Nestas situações, em termos de base de dados, o arruamento a considerar para o endereçamento do ramal e da CRL será o B; quanto ao número de polícia (Rua A) será sempre precedido de cardinal (#). Este símbolo dará indicação que o ramal de ligação e o número de polícia estão em arruamentos distintos.

Códigos	Arruamento	Nº. Polícia
CRL7 e RR7	RUA B	#277

- Os troços de coletor deverão ter, na representação em CAD, características homogéneas (diâmetro e material) ao longo do seu comprimento, devendo estar assinaladas regularmente; nos troços muito pequenos, sob pena de se prejudicar a perceção do desenho, dispensa-se a colocação do diâmetro e material – está informação estará disponível na base de dados;
- · O ramal de ligação deve ser cadastrado tendo em conta o ângulo de incidência com o coletor principal; sempre que exista, deve-se fazer referência ao ramal predial a montante da CRL;
- · Deve-se indicar o sentido de escoamento:
- No desenho, a câmara de visita deve fazer referência à cota da tampa, arredondada ao centímetro;

DIREÇÃO TÉCNICA E EXPLORAÇÃO

TELAS FINAIS

PÁGINA: 22 de 30		
REVISÃO: 2	2016-02-24	
EDIÇÃO: 1	2008-11-26	

- Sempre que existir, mencionar o número do polícia, que identifica a porta principal de uma casa, de um edifício, de um bloco de apartamentos ou de um terreno e tem uma correspondência física com a caixa ramal de ligação;
- Os números de polícia, no desenho, devem ser escritos individualmente (não colocar vários NP na mesma caixa de texto);
- · Prédios que não tenham número de polícia, inserir SN;
- A definição dos layers, a simbologia e código dos órgãos constituintes e a definição dos materiais a utilizar nas telas finas deverão ser escrupulosamente as referidas neste manual.

5.2. Travessia de outras redes de serviços


As infra-estruturas de outras entidades (EDP, Gás, Telefones, Águas Pluviais, etc.) e de Águas de Abastecimento, detetadas no subsolo aquando da abertura da vala para assentamento da conduta deverão ser cadastradas.

Na travessia de outras redes de serviços deverá proceder-se à marcação, sobre o traçado em planta, das secções onde se constatam travessias de condutas, coletores, cabos, etc., se possível identificando a rede a que pertencem e indicando a profundidade a que ocorrem.

No caso das condutas e coletores, considera-se útil o registo do diâmetro e material; no caso dos cabos, o registo do número e tipo.

O layer de cada rede de serviço terá o nome da respectiva entidade (ex: AR_EDP; AR_GAS).

Atendendo que SIG é uma ferramenta de trabalho com grande capacidade de armazenamento de informação, inclusive de imagem, vê-se com interesse a recolha de fotografias no decurso das empreitadas, efetuadas essencialmente a infra-estruturas enterradas, localizadas em pontos particulares das redes de água e saneamento, tais como, locais de interceção com outras redes de serviços, nós de derivação, entre outros.

5.3. Símbolos, Layers, Traços

Neste ponto define-se a simbologia específica dos órgãos constituintes da rede, os layers, o tipo e cor do traço dos coletores, fundamentais para uma boa estruturação das telas finais.

SIMBOLO	LAYER	COR	LINETYPE	LINEWEIGHT
	AR_COLETOR	42	Continuous	Default Global Width= 0.00
	AR_RAMAL_LIGACAO	192	Continuous	Default Global Width= 0.00
	AR_REDE_PREDIAL	3	Continuous	Default Global Width= 0.00
	AR_SUB_RAMAL_LIGACAO	4	Continuous	Default Global Width= 0.00
	AR_CAMARA_VISITA	42	Block Nome = A	R_CAMARA_VISITA
	AR_CAMARA_CEGA	42	Block Nome = A	R_CAMARA_CEGA
	AR_CAIXA_RAMAL_LIGACAO	42	Block Nome = AR_CAIXA_RAM	//AL_LIGACAO
0	AR_CAIXA_PREDIAL	10	Block Nome = Al	R_CAIXA_PREDIAL
	AR_CAMARA_MANOBRAS	42	Block Nome = AR_CAMARA_M	MANOBRAS
	AR_MEDIDOR_CAUDAL	42	Block Nome = AR_MEDIDOR_	CAUDAL
N	AR_MEDIDOR_NIVEL	42	Block Nome = AR_MEDIDOR_I	NIVEL
	AR_DESCARGA_FUNDO	42	Block Nome = AR_DESCARGA	_FUNDO
	AR_DESCARREGADOR	42	Block Nome = A	R_DESCARREGADOR

DIREÇÃO TÉCNICA E EXPLORAÇÃO

TELAS FINAIS

EDIÇÃO: 1 2008-11-26

REVISÃO: 2 2016-02-24

PÁGINA: **24 de 30**

AR_ELETROBOMBA 42 Block Nome = AR_ELETROBOMBA Block Nome = AR_ESTACAO_TRATAMENTO_AGUAS_RESIDUAI 42 AR_ESTACAO_TRATAMENTO_AGUA **ETAR** S_RESIDUAIS Block Nome = AR_ESTACAO_ELEVATORIA 42 **EEAR** AR_ESTACAO_ELEVATORIA AR_FOSSA_SETICA 42 Block Nome = AR_FOSSA_SETICA Block Nome = AR_PONTO_DESCARGA_EMERGENCIA 42 AR_PONTO_DESCARGA_EMERGENCIA AR_VALV_RETENCAO 42 Block Nome = AR_VALV_RETENCAO AR_VALV_MARE 42 Block Nome = AR_VALV_MARE Block Nome = AR_VALV_SECCIONAMENTO 42 AR_VALV_SECCIONAMENTO AR_VENTOSA 42 Block Nome = AR_VENTOSA Block Nome = AR_SENTIDO_ESCOAMENTO 7 AR_SENTIDO_ESCOAMENTO AR_SARJETA 42 Block Nome = AR_SARJETA AR_SUMIDOURO 42 Block Nome = AR_SUMIDOURO Fonte = **Text** Style = Standard 7 Font Name = txt.shx 113,73 AR_CAMARA_VISITA_COTA Height = 1.00 Width factor = 1.00

DIREÇÃO TÉCNICA E EXPLORAÇÃO

TELAS FINAIS

PÁGINA: 25	de 30
REVISÃO: 2	2016-02-24
EDIÇÃO: 1	2008-11-26
~	

			Fonte = Text
			Style = Arial
3797	AR_NUMERO_POLICIA	7	Font Name = Arial
			Height = 1.50
			Width factor = 1.00

Tabela 5 – Simbologia e Layers

Os nomes dos layers deverão ser rigorosamente os indicados na tabela anterior – palavras com letra maiúscula, sem acentuação e sem espaços (utilizar o carácter underscore).

5.4. Códigos

Cada órgão constituinte da rede (coletor, unitário, conduta elevatória...) deve ser codificado mediante um código alfanumérico, que é composto por um campo alfabético, identificativo do elemento e por outro campo numérico sequencial, com início no número 1.

O campo alfabético, correspondente ao código de cada elemento, deverá estar de acordo com a seguinte tabela:

ELEMENTO	CAMPO ALFABÉTICO
Coletor / Conduta Elevatória	Т
Ramal de Ligação	RR
Câmara de Visita	cv
Câmara Cega	СС
Câmara de Manobras	СМ
Caixa Ramal de Ligação	CRL
Medidor de Caudal	мс
Medidor de Nível	MN
Ponto de Descarga Emergência	PDE
Descarregador	D
Fossa Sética	FS

DIREÇÃO TÉCNICA E EXPLORAÇÃO

TELAS FINAIS

EDIÇÃO: 1	2008-11-26	
REVISÃO: 2	2016-02-24	
PÁGINA: 26 de 30		

Válvula de Seccionamento	vs
Válvula de Retenção	VR
Descarga de Fundo	DF
Ventosa	V
Válvula de Maré	VM
Eletrobomba	E
Estação Elevatória	EEAR
Estação de Tratamento de Águas Residuais	ETAR
Sarjeta	SA
Sumidouro	su

Tabela 6 – Campo alfabético do código do elemento (letra maiúscula)

Assim, um elemento tipo ventosa terá o código **V30**, em que V é identificativo da ventosa e 30 é o número sequencial.

Estes códigos terão de ficar necessariamente em layers diferentes do tipo **AR_VENTOSA_CODIGO**. Nos coletores e condutas elevatórias o código a utilizar será o **T** de troço – **T73**.

O layer a usar para o código dos coletores e condutas elevatórias será **AR_COLETOR_CODIGO**.

Código do Elemento (ex.)	Layer do Código	Tipo, Cor e Tamanho de Letra do Código
T10	AR_COLETOR_CODIGO	
RR39	AR_RAMAL_LIGACAO_CODIGO	Tipo Arial, Cor White(7) e Tamanho 1,00
CV13	AR_CAMARA_VISITA_CODIGO	
CRL51	AR_CAIXA_RAMAL_LIGACAO_CODIGO	

Tabela 7 – Layers de códigos dos órgãos mais frequentes (letra maiúscula)

DIREÇÃO TÉCNICA E EXPLORAÇÃO

TELAS FINAIS

REVISÃO: 2 PÁGINA: 27	2016-02-24
DEVICÃO. 3	2017 02 24
EDIÇÃO: 1	2008-11-26

Na tabela anterior estão mencionados os elementos da rede mais frequentes. Todos os outros seguirão o mesmo critério.

Quando se justifique e para melhor compreensão do desenho, pode-se alterar o tamanho da letra para valores inferiores a 1,00, de forma coerente.

Os códigos dos elementos deverão ser escritos em letra maiúscula.

Ao longo do traçado dos coletores e condutas elevatórias se assinalará o material e diâmetro dos mesmos – **PVC 200**. O layer para a etiquetagem do material e diâmetro será **AR_COLETOR_MATERIAL_DIAMETRO**.

Material e Diâmetro do Coletor e Conduta Elevatória	Layer do Material e Diâmetro do Coletor e Conduta Elevatória	Tipo, Cor e Tamanho de Letra do Material e Diâmetro
PVC 315		
FFD 100	AR_COLETOR_MATERIAL_DIAMETRO	Tipo Arial, Cor White(7) e Tamanho 1,50
G 200		

Tabela 8 – Layer do material e diâmetro do troço de coletor e conduta elevatória (letra maiúscula)

Nos troços pequenos, para não prejudicar a perceção do desenho, pode-se alterar o tamanho da etiquetagem para valores inferiores a 1,50, ou mesmo suprimi-la. Esta informação constará na base de dados e no respetivo layer. O material e diâmetro deverão ser escritos em letra maiúscula.

DIREÇÃO TÉCNICA E EXPLORAÇÃO

TELAS FINAIS

EDIÇÃO: 1	2008-11-26
REVISÃO: 2	2016-02-24
PÁGINA: 28 de 30	

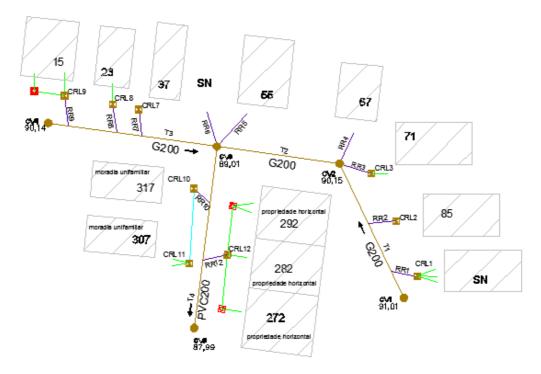


Figura 4 – Símbolos, códigos e cores.

5.5. Desenho em CAD

Este ponto revela-se de extrema importância. Se a informação for devidamente desenhada e estruturada, o tempo necessário para fazer a integração desta informação em SIG vai ser menor, otimizando-se assim o tempo de atualização de dados e os recursos humanos.

Os blocos mencionados na Tabela 5 e o exemplo tipo da Figura 4 estão devidamente definidos pela Indaqua, para a escala 1:1000, e estão disponíveis na página WEB da Indaqua – www.indaqua.pt – Atendimento Técnico – Elaboração de Telas Finais. Devem ser rigorosamente respeitados.

A unidade de inserção dos blocos é o metro, o scaleX, scaleY e scaleZ são iguais a 1 e no ambiente "Block Editor" as entidades que formam os blocos estão no layer ZERO.

DIREÇÃO TÉCNICA E EXPLORAÇÃO

TELAS FINAIS

PÁGINA: 29	2016-02-24
REVISÃO: 2	2017 02 24
EDIÇÃO: 1	2008-11-26

O ponto notável do bloco (snap point) está devidamente definido, geralmente no "centróide" do bloco.

O ponto de inserção do bloco do respetivo elemento (Ex: **CRL**) deve coincidir com a coordenada X,Y,Z, georreferenciada, obtida no terreno.

Devem ser respeitados os pontos de inserção dos blocos dos elementos e estes devem estar sob um "snap point" ou no final das entidades que representam os coletores e ramais de ligação.

Devem ser traçados os ramais de ligação desde os pontos de inserção dos blocos que representam as caixas ramal de ligação, até aos respetivos coletores ou câmaras de visita, respeitando a devida inclinação.

Os coletores devem estar interrompidos nos pontos de inserção dos blocos das câmaras de visita.

Todos os coletores, condutas elevatórias e ramais de ligação devem ser desenhados como polylines, à cota ZERO, e digitalizados, sempre, no sentido do escoamento (CV montante para CV jusante - CRL para CV - CRL para Coletor – Estação Elevatória para CV).

Deve ser garantida a perfeita conetividade entre elementos:

- Câmara de visita Coletor Câmara de visita;
- CRL Ramal de ligação Câmara de visita;
- CRL Ramal de ligação Coletor;
- Estação elevatória Conduta elevatória Câmara de visita.

5.6. Base de Dados das Infraestruturas

Cada tipo de infraestrutura deve ter associado uma base de dados (folha de Excel), contendo os respetivos atributos.

DIREÇÃO TÉCNICA E EXPLORAÇÃO

TELAS FINAIS

EDIÇÃO: 1	2008-11-26
REVISÃO: 2	2016-02-24
PÁGINA: 30 de 30	

A base de dados está devidamente definida pela Indaqua e está disponível na página WEB da Indaqua – www.indaqua.pt – Atendimento Técnico – Elaboração de Telas Finais. Deve ser rigorosamente respeitada.

Para cada elemento (Ex:CRL144), o código existente no desenho (AutoCAD) deve ser exatamente igual ao código da base de dados (Excel).

Se um ramal de ligação ou caixa ramal de ligação tiver associado vários números de polícia, na base de dados devem ser separados por hífen (-). Prédios que não tenham n.º de polícia, inserir SN.

O atributo ARRUAMENTO deverá ser preenchido de acordo com a toponímia local. Arruamentos sem toponímia deverão ser designados por "Sem Denominação".

Células referentes a Coordenadas M e P, Cotas e Profundidades devem ser do tipo Número, com 2 casas decimais (arredondado ao cm).

A célula referente à Inclinação do coletor deve ser do tipo Percentagem, com 1 casa decimal.

Na base de dados, atributos como a Profundidade da Cotas de Soleira das câmaras de visita e CRL, Comprimento e Inclinação dos coletores gravíticos, devem ser calculados pelo próprio Excel, fazendo uso das fórmulas e dos atributos necessários para o seu cálculo.

Devem-se preencher todos os campos passíveis de serem preenchidos.